

APLICAÇÃO ANALÍTICA DO ESPALHAMENTO RAMAN AMPLIFICADO EM SUPERFÍCIE (SERS) NA DETECÇÃO DO **NEUROTRANSMISSOR L-DOPA**

Congresso Online Nacional De Química Analítica E Ambiental., 1ª edição, de 26/10/2020 a 30/10/2020 ISBN dos Anais: 978-65-86861-45-7

OLIVEIRA; Tatiana A. 1, MARTIN; Cibely S. 2, RUBIRA; Rafael. J. G. 3, OLIVEIRA; Marcelo J. S. 4, BARROS; Anerise de 5, CONSTANTINO; Carlos. J. L. 6

RESUMO

A perda de células nervosas pode levar a uma deficiência e diminuição dos níveis de dopamina, um neurotransmissor de suma importância para o funcionamento do sistema nervoso central. A diminuição dos níveis de dopamina está relacionada com o desenvolvimento da doença de Parkinson [1]. Uma das formas de tratamento paliativo dessa doença é através da administração via oral do precursor levodopa (3,4 dihidroxifenilalamina, L-Dopa), que através de mecanismos bioquímicos é convertido em dopamina. Dessa forma, a quantificação dos níveis de dopamina e de L-Dopa é necessário para o monitoramento da doença de Parkinson. Assim, a técnica de espalhamento Raman amplificado em superfície (SERS - Surface-enhanced Raman Scattering) utilizando nanopartículas metálicas é uma alternativa para a detecção desses compostos. No entanto, as características zwiteriônicas da L-Dopa no intervalo de pH de 2,3 a 8,1 dificultam a detecção de L-Dopa através de SERS utilizando nanopartículas com cargas negativas, conforme discutido por Rubira et. al [2]. Deste modo, nesse trabalho utilizamos nanobastões de Au (AuNRs) que apresentam carga superficial positiva com o intuito de melhorar o sinal SERS da L-Dopa. As medidas de detecção via técnica SERS foram realizadas através das adições de alíquotas de solução estoque de L-Dopa (10⁻⁴ mol/L) em 1,0 mL de AuNRs, obtendo valores de concentração de $5x10^{-7}$ a $7,4x10^{-5}$ mol/L. A obtenção do sinal SERS da L-Dopa apresentou uma dependência com o tempo de adsorção da molécula sobre a superfície das AuNRs. Dessa maneira, através das medidas de extinção e de tamanho de partícula (espalhamento dinâmico de luz) foram observados aumentos significativos dos tamanhos e agregações das AuNRs na presença da L-dopa com tempo de adsorção superior a 60 minutos. Além disso, acima de 60 minutos a carga superficial positiva (potencial zeta) diminui, indicando a adsorção da L-Dopa (carga zwiteriônica) sobre as AuNRs. Essa agregação cria sítios ativos que favorecem a amplificação do sinal Raman (SERS) e possibilitou

 $^{^1}$ Faculdade de Ciências e Tecnologia, tatiana.oliveira@unesp.br 2 Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCT/UNESP), cssmartin@gmail.com

³ Presidente Prudente – SP, rafael.gon.fis@gmail.com 4 Faculdade de Ciências e Tecnologia, marcelo.oliveira@unesp.br 5 Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCT/UNESP), anerisedebarros@gmail.com

⁶ Presidente Prudente - SP. carlos.constantino@unesp.br

a obtenção da curva de calibração através da adição múltipla de padrão em um volume fixo de coloide, sendo coletados os espectros SERS após 60 minutos de cada adição de L-dopa. Os espectros SERS obtidos utilizando o laser 785 nm apresentaram um aumento da intensidade das bandas em 240, 433, 785, 955 e 1289 cm⁻¹ com o aumento da concentração de L-Dopa. Os valores de área da banda em 433 cm⁻¹, atribuída ao estiramento do anel catecol [3], mostraram uma relação linear no intervalo de concentração entre 2,0x10⁻⁶ e 4,7 x10⁻⁵ mol/L, com limite de detecção (LOD) e quantificação (LOQ) de 6,7x10⁻⁷ e 2,6x10⁻⁶ mol/L, respectivamente. Os valores de LOD e LOQ, bem como o intervalo linear de resposta foram melhores quando comparados aos sistemas nanopartículas carregadas negativamente (geralmente nanopartículas de prata (AgNPs) ou ouro (AuNp)). Portanto, os resultados apresentam uma melhora significativa para a detecção de L-Dopa via SERS em AuNRs. [1] Muzzi N. et. al, Biomed. Pharmacother. 2008, 62, 253. [2] Rubira, R.J.G.; et. al, Sensors. 2020, 20, 1. [3] Figueiredo, M.L.B.; et. al, Appl. Surf. Sci. 2020, 522, 146466.

PALAVRAS-CHAVE: SERS, detecção, L-Dopa, AuNRs

 $^{^1}$ Faculdade de Ciências e Tecnologia, tatiana.oliveira@unesp.br 2 Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCT/UNESP), cssmartin@gmail.com

³ Presidente Prudente – SP, rafael.gon.fis@gmail.com 4 Faculdade de Ciências e Tecnologia, marcelo.oliveira@unesp.br 5 Universidade Estadual Paulista "Júlio de Mesquita Filho" (FCT/UNESP), anerisedebarros@gmail.com

⁶ Presidente Prudente - SP, carlos.constantino@unesp.br